研究揭示糖基磷脂酰肌醇转酰胺酶复合物与配体结合的结构和自抑制机制

【来源:上海市人民政府_今日上海_行业信息】近期,《自然-通讯》(Nature Communications)在线发表了中国科学院分子细胞科学卓越创新中心李典范研究组与复旦大学屈前辉课题组的合作完成的研究成果(Structures of Liganded Glycosylphosphatidylinositol Transamidase Illuminate GPI-AP Biogenesis),揭示了糖基磷脂酰肌醇(GPI)转酰胺酶(GPI-T)复合物识别广泛底物的结构基础和防止意外剪切的自抑制机制。GPI修饰是真核生物中普遍存在的翻译后修饰

【来源:上海市人民政府_今日上海_行业信息】

近期,《自然-通讯》(Nature Communications)在线发表了中国科学院分子细胞科学卓越创新中心李典范研究组与复旦大学屈前辉课题组的合作完成的研究成果(Structures of Liganded
Glycosylphosphatidylinositol Transamidase Illuminate GPI-AP Biogenesis),揭示糖基磷脂酰肌醇(GPI)转酰胺酶(GPI-T)复合物识别广泛底物的结构基础和防止意外剪切的自抑制机制。

GPI修饰是真核生物中普遍存在的翻译后修饰。水溶性前体蛋白通过GPI修饰而锚定在细胞膜上,行使包括信号转导、催化、细胞黏附等在内的基本生物学功能。GPI-T是GPI锚定蛋白(GPI-AP)生物合成途径中的关键酶,是一个五元跨膜复合物,负责将前体蛋白C端的信号肽切除并将脂分子GPI连接到新暴露的C末端。与多数蛋白水解酶不同,GPI-T识别的肽段序列不具有序列唯一性,而仅有模糊的亲疏水排列特征。它的切割位点(w位点)通常为侧链较小的氨基酸,且切割位点至C末端疏水段由~10个亲水氨基酸残基的肽段相连(图1a)。如何实现底物宽泛性与催化保真性这一“矛盾统一体”,是GPI-AP生物合成中重要的生化机制问题。

该研究组前期解析了人源GPI-T的2.53埃冷冻电镜三维结构,揭示了其异源五聚体的组装机制(图1b),但GPI-T同时实现底物宽泛性(图1a)与催化保真性的机制仍不明确。

若回答上述问题,需要解析GPI-T与底物(前体蛋白、GPI)或者与产物(GPI-AP、信号肽)的复合物结构。这是由于GPI分子目前尚不能通过化学方法合成。该团队设计了细胞工程与蛋白质工程方法。研究通过基因敲除与点突变相结合的手段,将GPI-T复合体分别停留在“底物结合”和“产物结合”状态,并解析了二者的高分辨率结构(图2a、b)。结合活性分析体系,该工作揭示了GPI-T同时实现底物宽泛性与催化保真性这一“矛盾统一体”的机制。

研究表明,在保真性上,GPI-T使用一个自抑制环锁定于非活性构象(图2c)。同时,激活过程的构象变化需要打破数个氢键、盐键相互作用并引入电荷及亲疏水排斥。这种多重保护机制避免了因底物宽泛性而造成的意外水解。

研究显示,底物结合GPI-T时,信号肽与复合体的结合提供结合能,促使GPI-T亚基以刚性移动为主的构象变化,启动上述耗能的激活过程,打开自抑制环;同时,信号肽近催化部位的亲水部分通过诱导契合的方式,促使GPI-T催化中心的精确重构(图2d)。

进一步,该团队设计了“功能增强突变体”和“功能丧失突变体”,证明了所提出的自抑制与底物结合诱导的激活机制。

此外,该工作还揭示了GPI-T识别宽泛性底物的结构基础和催化的生化机制。

研究工作得到国家自然科学基金委员会和中国科学院的支持。

图1.GPI-T的冷冻电镜结构及其活性中心组成。a、GPI-T催化反应及底物特征示意图;b、GPI-T的冷冻电镜密度图。

图2.GPI-T与底物、产物结合的结构揭示自抑制与激活机制。a-b:GPI-T与底物(a)、产物(b)的冷冻电镜密度图;c、自抑制环(红色)占据了底物(绿色)结合口袋;d、GPI-T从自抑制状态(蓝色)向活性构象(洋红色)的构象变化;e、GPI-T的激活过程。

声明:此文版权归原作者所有,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。邮箱地址:[email protected]

声明:本文内容来源自网络,文字、图片等素材版权属于原作者,平台转载素材出于传递更多信息,文章内容仅供参考与学习,切勿作为商业目的使用。如果侵害了您的合法权益,请您及时与我们联系,我们会在第一时间进行处理!我们尊重版权,也致力于保护版权,站搜网感谢您的分享!(Email:[email protected])

上一篇 2025-01-22
下一篇 2025-01-22

猜您喜欢